Showing posts with label East Coast. Show all posts
Showing posts with label East Coast. Show all posts

Tuesday, January 19, 2016

January 22-25 Potentially Historic Winter Storm

A potentially historic winter storm looks to be unfolding for portions of the Eastern U.S.

Tropical Tidbits
A low pressure system is forecasted to develop in the South US and push northeastward to the area just offshore the Mid-Atlantic, with this coastal storm fully unfolding around January 23rd-24th. The above image shows the GFS 500mb geopotential height contours and mean sea level pressure values for the morning of January 24th. We see the snowstorm located fairly out to sea, at approximately 985 millibars. This track would produce the snow map below, taking this solution verbatim.

Tropical Tidbits
This solution would bring about 6-12" of snow to the Kentucky and Tennessee region, extending into extreme southern Indiana and a good chunk of southern Ohio. We also see similar amounts into northern Arkansas and southern Missouri, as well as North Carolina. Amounts on the order of 12-24" are outlooked for West Virginia, particularly the southern part of the state, into the majority of central Virginia, New Jersey, and eastern Pennsylvania into southern New York, with some slightly lower amounts further east into Massachusetts. Long Island is also forecasted to receive upwards of 12" if this solution were to verify.

Tropical Tidbits
To emphasize how critical the placement of this system will be, take a look at the ECMWF model's 500mb geopotential heights and mean sea level pressure values for the morning of January 24th, the same timeframe as the GFS graphic. We see the system at 984 millibars, pretty similar to the GFS, but the system is clearly displaced further west. Given how anomalously warm the Atlantic currently is, this shift could easily push those two to three feet amounts inland, and leave the coastline with rainy conditions. This run of the ECMWF has snowfall amounts of over 30" in central Virginia, but lesser accumulations the further north and east you go.

Tropical Tidbits
The GEM model shows amounts in the 6-12 inch range for most of Missouri into the southern parts of Illinois, Indiana and Ohio, as well as much of Kentucky and northern Tennessee into western North Carolina. Amounts in excess of 30" are forecasted from Maryland into Pennsylvania, certainly an incredible amount of snow, but not entirely off the table given how strong and persistent this system may end up being. Again, the placement of this storm will be critical to who gets the heaviest accumulations, and we likely won't know who will receive this jackpot until the storm is actually happening.

Tropical Tidbits
One last bit of advice, do not bite on any particular model run for this storm. The strength of this storm, as well as how long-lasting it will be, among other factors, makes me way too uneasy to trust any single solution, hence why I presented a plethora of models here. The above graphic shows GFS ensemble spread in MSLP values for this storm. The warmer colors to the left and right of the system indicate increased uncertainty with where the storm will track. Again, this emphasizes how no single solution is set in stone, and thus should not be taken at face value. A lot of change will happen in the next several model cycles, and the heaviest amounts could plausibly shift a substantial bit as these changes unfold.

To summarize:

- A potentially historic snowstorm is forecasted to occur along the East Coast over the January 22-25 period.
- Currently, the Maryland/Virginia/Pennsylvania region is on track to receive the heaviest amounts.
- The heaviest accumulations could reach or exceed 30".
- Enough uncertainty still exists to change the storm track substantially, as well as shift the heavy snow axis and amounts.

Andrew

Friday, February 6, 2015

Upcoming Pattern Very Favorable for East Coast Snowstorms

The upcoming pattern appears to be very favorable for snowstorms along the East Coast.

Tropical Tidbits
The above image shows the 500mb geopotential height anomaly field over North America, forecasted by the GFS Ensembles from February 11th to February 16th. In this graphic, we see a strong upper level low dipping down over the Bering Sea, forcing a strong ridge to blossom along the Western US. A Rex Block then forms in the Southwest, as an upper level low slides under the ridge. Usually, a Rex Block upstream creates zonal flow downstream, but instead of rather calm weather in the East US, we see a deep upper level low pushing its way into the Northeast. This looks to be the pattern for the next 2 weeks or so.

In this sort of pattern, sustained northwest flow (winds from the northwest) often leads to a 'clipper train', where a multitude of Alberta Clippers slides southeast-ward into the Central US. These clippers can then move east off the coast, and can intensify to produce heavy accumulating snow for the East US. I believe that this is a possibility, and could happen more than once in the next couple of weeks.

Unisys
A look at sea surface temperatures shows how potent this environment is. For now, we'll focus on the East Coast. Notice all the oranges and reds immediately along the coastline, extending a bit east. Those are very warm waters, with well-above normal anomalies being detected. Consequentially, any clippers that move off the coast and threaten the East will have unusually warm waters to work with, which could very well enhance snowfall totals.

To summarize:

- The upcoming pattern is favorable for accumulating snowfall in the East US.
- This pattern may support more than one event of plowable snow.
- Extreme cold may affect the Northeast, at times.

Andrew

Monday, February 2, 2015

February 10-15 Potential Winter Storm

I'm watching for the potential for wintry weather in the February 10-15 period.

Tropical Tidbits
The image above shows 500mb geopotential height values for the morning of February 5th, with mean sea level pressure (MSLP) contours superimposed. In this graphic, we see two areas of low pressure over the Western Pacific. The more dominant system is located south and east of Japan, with another piece of energy just west of this island nation. In the forecast hours after this graphic, it appears the energy west of Japan transfers to the storm east of Japan. From there, the dominant low moves generally northeast, away from Japan. When we use the Typhoon Rule, which states weather phenomena occurring over Japan is reciprocated in the US 6-10 days later, a storm in the US might be expected in a February 10-15th period, adding a day for some uncertainty I have on timing. Additionally, the transfer of energy over Japan tells me we could be looking at a transfer scenario from the Midwest/Great Lakes/Ohio Valley into the Northeast.

ESRL
We can take a look at teleconnections to get a glimpse at what this storm might do. For this post, we'll pay attention to the top-right North Atlantic Oscillation (NAO) outlook. Notice how the index rises from negative to neutral territory right in the timeframe of this potential winter storm. The NAO switching phases is known to be a red flag for snowstorms in the Northeast, as the risk of snow events in that area tend to rise when this switching of phases occurs. This could support the idea of a transfer storm to the Northeast, like the GFS showed (in a likely overdone projection) in its 12z forecast:

Tropical Tidbits

To summarize:

- Model guidance is indicating a winter storm may impact the country in a February 10-15 period.
- As of now, a transfer low from the North-Central US to the East Coast may be a likely solution.
- As usual, high uncertainty still exists.

Andrew

Sunday, December 28, 2014

January 6-10 Potential Winter Storm

Model guidance is latching onto what could be our first shot at a strong winter storm, in the January 6-10 timeframe.

Tropical Tidbits
The above image shows 500mb geopotential height values in colored shadings, and MSLP values in contoured lines, across the West Pacific on New Years Eve. In this image, we see a strong low pressure crossing Japan, with a minimum central pressure value of 991 millibars, before sliding north and east towards the Aleutian Islands. If we apply the Typhoon Rule, which states that weather phenomena occurring in the West Pacific is reciprocated in the United States six to ten days later, we may extrapolate this to mean a strong storm could impact the US in a January 6-10 timeframe.

Other model guidance supports a weaker system moving over Japan, meaning we will need to monitor the region in coming days. If the storm crosses Japan at a weaker intensity, the storm here in the US would likely be weaker as well.

Purely for 'eye candy', here's the latest GFS projection of a storm in the East US on January 6th. This graphic isn't a forecast you should count on to verify.
COD
To summarize:

- A storm system may impact the US between January 6-10.
- Storm strength is still uncertain, and all aspects exhibit very high uncertainty at this juncture.

Andrew

Saturday, December 13, 2014

December 19-21 Potential Winter Storm

Model guidance is supporting the risk of a winter storm in the December 19-21 timeframe.
I'm trying to decide how to start off this post, since simply going through model guidance won't work. I'll begin by explaining each graphic, doing a compare/contrast as we do so.

Tropical Tidbits
The latest GFS model has a trough pushing into the Midwest on December 20th, as the blue colors and depression of contour lines shows. This trough is beginning to close off after becoming negatively tilted, and is pushing northward as a result. The surface low takes a track through the Ohio Valley on this run, dropping appreciable snows from east Kansas into southern Michigan. North Missouri sees snow over 6" from this system.

In this overview of the pattern, we can diagnose a few items arguing for this more inland track, as future guidance I'll show you will depict an East US track. First of all, we have another strong trough dropping into the West US, trying to work its way southward. This will try and force a ridge to develop in the central and eastern Rocky Mountains, as we can already see above. However, as we see a deep upper level low over Greenland, this ridge won't be able to exert too much influence (that ULL over Greenland defines the positive phase of the North Atlantic Oscillation/NAO, notorious for keeping the jet stream very 'non-wavy')
What does make a ridge form, however, is the troughing in the Bering Sea into the Gulf of Alaska, a textbook positive East Pacific Oscillation (EPO) pattern, which will act to limit cold air reserves in Canada, but also try to direct storm systems northward. The latter influence is seen well in that ridge centered over New York, just east of the storm system in question. That same northward influence could happen along the East Coast, but for now, the GFS favors this solution.

Tropical Tidbits
Here's the ECMWF 500mb geopotential height anomaly forecast, valid at the same time as the GFS graphic. We see more than a couple significant differences here.

First and foremost, the storm system in question seems to be developing a second piece of energy, signified by that second dip in the contour lines along the Gulf Coast. Looking at the forecast following this timeframe. it looks as if that second piece of energy will act to pull the main trough east, and develop it into an East Coast system. This is far different from the GFS, which maintains a single trough.
Additionally, we see the entrance time of the second trough into Western North America has been slowed by about a day. This allows the ridge in the central and eastern Rockies to flourish well into Canada, where the ridge up there is also quite a bit stronger than its GFS counterpart. Consequentially, the storm system is suppressed to the south in the ECMWF forecast. Also, note the lack of a ridge to the east of the storm system in the ECMWF image, compared to the GFS. This, combined with the extra piece of energy along the Gulf Coast, appears to favor an East Coast solution. The solution results in this pattern, valid 24 hours after the image above:

Tropical Tidbits
Purely for comparison, here's the GFS snowfall forecast I mentioned earlier, expressing the solution in opposition to the ECMWF:

Instant Weather Maps
I've been looking back and forth between the ECMWF and GFS images I've shown above, trying to figure out which one I think is the most valid, and I can't decide.

On one hand, the ECMWF projection appears to be obeying the positive EPO signal, as exhibited by troughing along the west coast and a strong ridge in central Canada.

On the other hand, the GFS is doing well with the emergence of a ridge just east of the trough, possibly as a result of the negative PNA orientation out west, as the aforementioned second storm system drops into the West.

It will ultimately depend on the timing of when the trough drops into the West, just how strongly the atmosphere responds to the +EPO signal, and (of course) if that secondary piece of energy forms along the Gulf Coast. It's worth noting none of the model guidance is having any consistency with the ridge in Canada, purely by looking at run-by-run comparisons. Additionally, today's 12z ECMWF run (examined above) is the first one to have that secondary piece of energy develop to the south of the storm, something that does not bode well for any consistency that either the GFS or ECMWF may have built up. I'll pass on giving my opinion right now, because this is a truly grotesque set-up.

To summarize:

- A winter storm is possible for the Central or East US in the December 19-21 timeframe.
- Model guidance is expressing little to no consistency on a defined track for this storm.
- Cold air availability will eventually become a concern.
- Anomalously low confidence exists.

Andrew

Sunday, November 2, 2014

November 24-30 Potentially Significant Winter Storm

It's becoming evident that we may be dealing with a potentially very strong Thanksgiving winter storm.

Tropical Tidbits
The image above shows the GFS model's combined forecast of 500mb geopotential height values (colored shadings) and mean sea level pressure (MSLP) contours over the West Pacific and north-central Pacific basins. High and low pressure demarcations are also seen. This forecast is valid on the evening of November 7th, and may have a significant effect on our weather here.

The potential for a significant winter storm evolves out of the Bering Sea for this forecast. The method, referred to as the Bering Sea Rule, takes the occurrence of high and low pressure events in the Bering Sea, and expects a similar weather phenomenon to occur in the US about 17-21 days later. This is almost exactly like the Typhoon Rule I commonly discuss when analyzing winter storm potentials, except now the area to watch is the Bering Sea, and the timeframe from occurrence in the Bering Sea to reciprocation in the US is now 17-21 days.

Getting back to this model forecast, we can see a very strong extratropical cyclone impacting the far western Aleutian islands, with a minimum central pressure of 930 millibars. If we utilize the Bering Sea Rule here, and extrapolate the forecasted time frame above of November 7th out seventeen to twenty-one days, we find ourselves with a potentially significant winter storm in a rough November 24-30th timeframe.

The evidence supporting this storm doesn't end here; we have a long way to go...

Tropical Tidbits
The model now shown above is the Canadian GEM forecast model, with the same 500mb geopotential height and MSLP contour parameters as the GFS model (for future reference, all model guidance we will analyze here today will use those 500mb and MSLP parameters). This forecast is valid on the afternoon of November 8th, nearly a day later than the GFS forecast above. Despite this time difference, we still see that very strong storm system from the GFS model now appearing in the GEM's forecast, with a minimum central pressure of 944mb spread across a heavy majority of the Bering Sea. Once again, this supports the prospect of a strong winter storm, if not solely a strong blast of cold air, to the US in late November.

Tropical Tidbits
Let's now examine the ECMWF model, commonly referred to as the most accurate weather model in the world at this time. The forecast panel above is valid for the evening of November 7th, and even though the storm hasn't reached the Bering Sea yet, its minimum central pressure is already down to whopping 930 millibars!

Tropical Tidbits
If we fast forward that same ECMWF model forecast up twenty-four hours to the evening of November 8th, we find that the storm system has gotten a bit stronger, and quite larger. The minimum central pressure is now down to 928 millibars, with the storm's influence spread from Russia to Alaska! The ECMWF model joins the GFS and GEM in supporting a strong winter storm for late November, possibly in time for Thanksgiving.

I could keep adding more and more model guidance projections to prove my point, but the general premise is already pretty clear by now. The three aforementioned models, in conjunction with the GFS-Parallel, ECMWF ensembles, and GFS Ensembles are favoring a very strong storm system in the Bering Sea for around November 7th or 8th.

The next question becomes, who could it target?

Well, if these model forecasts do verify as they appear now (which is nowhere from certain), each model projection would hit a difference part of the nation. The forecast members with the storm further west in the Bering Sea would find the Thanksgiving storm system in the Central US, while the model guidance members further east into the middle Aleutian Islands (or even further east) would likely find the consequential Thanksgiving timeframe storm in the East US, possibly along the coast.

Because this potential storm is still over 7 days away from appearing in the Bering Sea, and thus guidance can be expected to change with uncertainty, it's not worth putting down an accurate estimate as to where the storm may hit. However, just glancing over trends from these three shown models, as well as others available, would only slightly support more of a Central US/inland East US storm system.

To summarize:

- Model guidance is favoring a very strong storm to hit the Bering Sea in the next few days.
- If this storm ends up as strong as projected, it may result in a very strong winter storm around the Thanksgiving timeframe.
- A lot of uncertainty exists with this storm at this time.

Andrew

Thursday, October 16, 2014

Long Range Discussion, Concerns About Winter (Part 1)

Update: Click Here for the new Part 2 Post (ideally read after reading this post).

Today, we'll go over the latest outlook for the long range, and go over some new concerns I have about the coming winter. This is the first post of the two, dealing with the long range forecast portion. The winter concern post will come out tomorrow.

Let's first discuss the Global Wind Oscillation and Atmospheric Angular Momentum (GWO and AAM) concepts.

ESRL
The image above shows anomalies of the relative atmospheric angular momentum (AAM) since this past July to the present day. The image looks pretty complicated, and in reality it is, so we'll avoid any extremely difficult parts. In essence, positive AAM values can indicate enhanced areas of the jet stream, while negative values may indicate a weakened jet stream. As an example, take a look at the green swath around the 60N parallel in the first days after October. This green tells us of negative AAM anomalies in the area, so let's see if we can identify a cause behind it.

CPC
The graphic above shows geopotential height anomalies since the middle of this past June. The top panel gives an indication of these geopotential height anomalies on a time-by-height graph, where reds depict positive height anomalies (warm weather, high pressure) and blues indicate negative height anomalies (cold weather, low pressure). Check out that big swath of reds only a few days after the start of October. We saw significant ridging in the troposphere and even into the stratosphere, disrupting the jet stream and sending the Arctic Oscillation plummeting. As the jet stream significantly weakened with the ridging pushing through, the AAM reflected appropriately a negative AAM.

The overall AAM anomaly is shown by the bottom panel, and we can see how the AAM has been negative lately. However, it's been rising in recent days.

ESRL
The image above now shows the tendency of the AAM; among other things, it tells us whether the AAM wants to be in positive or negative territory. Lately, the AAM tendency has been in a positive state, and this is likely what the rising relative AAM is caused by. The tendency will take on a more significant role later on in this post.

ESRL
Take a look at the graphic above. Pretty complicated, right? Not quite. In the bottom left and right corners, as well as the top left and right corners, we see descriptions for regions that see convection in various stages of the Global Wind Oscillation (GWO). Phase 3 sees Indian Maritime convection, while the Dateline region observes tropical thunderstorms in Phase 5, and so on. More experienced weather junkies may realize these denotations are actually juxtaposing the Madden-Julian Oscillation (MJO) onto this GWO description.
As for the GWO itself, it does have eight phases, as the chart above entails. From another source in the ESRL, the GWO has been allotted into four primary phases. I've copied and pasted the four phase descriptions below:

The four primary phases of the GWO are described below, along with generally cold season (November-March) probable weather impacts for the USA. The GWO recurrence interval, or "time it takes to make a circuit", ranges from a broad 15-80 days. Two of the stages project strongly on El Nino and La Nina circulation states, which are also characterized by positive (Stage 3) and negative (Stage 1) global AAM anomalies, respectively.  Stages 2 and 4 are transitional.

Stage 1 (La-Nina like) – the global relative AAM anomaly is negative. The negative anomaly is primarily due to easterly upper level wind anomalies that extend from the Eastern Hemisphere tropics to the Western Hemisphere mid-latitudes. A retracted Pacific Ocean jet stream is a key feature in the total field.  Troughs are probable across the western USA with a ridge over the southeast.  High impact weather is favored across the Plains.

Stage 2 – the global relative AAM tendency is positive. This means that negative AAM is being removed from the atmosphere by surface friction and mountains. At the same time, westerly wind anomalies are intensifying in equatorial regions of the Western Hemisphere. Fast Rossby wave dispersion events in both hemispheres are a coherent feature of this stage and Stage 4.  A cold regime is probable across the central USA.

Stage 3 (El-Nino like) – the global relative AAM anomaly is positive. Westerly wind anomalies move into the Eastern Hemisphere, broaden in latitudinal extent and link up with deep westerly flow anomalies over the mid-latitude Western Hemisphere. An extended Pacific Ocean jet stream and southward shifted storm track is observed  favoring high impact weather events along the USA west coast.

Stage 4 – the global relative AAM tendency is negative. Positive (westerly) AAM anomalies are being removed by surface friction in the Western Hemisphere mid-latitudes and through mountain torques across the Northern Hemisphere topography. The next phase of the oscillation (if there is one) is represented by easterly wind anomalies intensifying over equatorial regions of the Western Hemisphere. This stage has enhanced subtropical jets and closed lows in the subtropics favoring rainfall events over the southwestern USA.
'Woah! Slow down! I don't know what this means!' is probably what some of you are thinking right now. Let's cut out the complicated parts and focus our attention on the underlined phrases above. In each stage, there's a description about the AAM and AAM tendency. We know what those mean, after discussing them above, so let's put it to use. Right now, the relative AAM is negative and the tendency of the AAM is positive. If we match that up with the underlined phrases, we find ourselves in a Stage 2 set-up, with the negative relative AAM described in Stage 1, but the positive AAM tendency described in Stage 2. Doing a quick evaluation, when we account for the fact that El Nino-like anomalies (Stage 3) are shown by high GWO values (Phases 5-8), and La Nina-like anomalies (Stage 1) display themselves in low GWO phases 1-4, we can estimate the GWO to currently be around Phase 3 or 4, given how Stage 2 (where we are now) is in between the high and low GWO phases.

As if that wasn't confusing enough already, we can actually forecast the AAM in the future!

ESRL
The graphic above now shows transport of the AAM. As if there aren't enough ways to examine the AAM, the transport of the AAM can allow us to delineate how AAM anomalies are making their way to the upper latitudes; I've drawn two arrows to illustrate this above. Notice how we currently see decently-strong positive AAM transports pushing northward. This tells us that we can expect a strengthening jet stream in the near future (if we recall positive AAM shows a strong jet stream), something confirmed by the forecast of the Arctic Oscillation, as we see below.

CPC
Ensemble members have the Arctic Oscillation pushing positive, something I wouldn't be surprised to see with the positive AAM transports in coming days.

-----------

Let's take a step away from the AAM now and move on to other long range factors.

PSU
The graphic above shows a 500mb mean height anomaly forecast from the combined GFS ensemble members, with individual ensemble member height contours shown in the smaller panels. On this graphic, valid for 60 hours out, we can see a strong trough dropping into the Gulf of Alaska, as the deep blue colors indicate. A small cut-off low occupies the Southwest, with a weak ridge persisting in the Plains. A trough is on its way to the Atlantic, as seen in the Northeast in the graphic above.
If you were to examine a loop of the forecast from these GFS ensembles, you would see several bursts of ridging in the West and Central US that initially appear strong, but quickly weaken and push east. If you're a close reader, you'll take a look at the description of the GWO Stage 2 and realize that these quick-dissipating ridges are actually the 'Fast Rossby Wave dispersion events'.

The atmosphere's just one big web of connections and correlations...

PSU
Fast forwarding to the GFS ensemble height anomaly forecast valid 264 hours out, we now see that Gulf of Alaskan troughing has pushed east into the West Coast, thanks to sustained ridging in the Bering Sea. As such, the ridging previously in the West/Central US is now finding a home further east, in the Plains. The New England region is seen basking in below-normal temperatures with the negative height anomalies.
Take a look back at our AAM section and give Stage 3 a look. As I had indicated, we're forecasted to head into positive AAM territory, which is the equivalent of Stage 3 in the GWO. Note how the Stage 3 description tells of an extended Pacific Jet Stream, as well as high-impact weather events in the West US. It's no mistake that the long range GFS ensembles are showing a stormy West Coast, fitting in with that Stage 3 description.

I'll use these forecast images again in tomorrow's Part 2 post, which will go over my concerns about next winter; my post here is already too long to extend it into the second topic.

Tropical Tidbits
Let's give our brains a break and use some of our simpler tools in the long range. The image above shows the ECMWF 500mb height anomaly forecast over the Western Pacific, valid this morning (Thursday). Note the trough digging into Japan. Using the Typhoon Rule and 6-10 day correlation, we can expect a stormy period in the US 6-10 days from today, in an October 22nd to 26th period.

Tropical Tidbits
But all's not well that ends well, winter weather fans. The graphic above shows the same ECMWF height anomaly forecast in the West Pacific, now valid for 10 days out. We see a massive - emphasis on massive - ridge forecasted to cover the eastern part of Asia, including over Japan. If this forecast comes to fruition, we might expect to see a prolonged period of significant warmth in the November 1st to November 5th timeframe. Again, that's if this comes to fruition.

JMA
One final piece concerning this forecast. I mentioned the Madden-Julian Oscillation (MJO) earlier in this post, and wanted to discuss it for a moment. In the image above, we see Outgoing Longwave Radiation (OLR) anomalies in the color shadings, with 200mb velocity potential contours and divergence with the arrows. Negative OLR anomalies indicate stormy weather, and are displayed as blues on this graphic. Oranges depict positive OLR anomalies, highlighting quieter than normal tropical convection. Notice how the strongest divergence is located just west of South America... and it doesn't even appear to be focused along the Equator! This tells us that although tropical forcing is strongest in the Western Hemisphere, the MJO is anomalously weak, as it has been for the last several weeks, per the graphic below.

CPC
40 day observed MJO
The MJO isn't expected to be a significant factor now or in the near future, per model forecasts.

Long Range Forecast Summary

- The AAM is expected to shift to positive in coming days, as the AAM tendency remains positive and positive AAM transports are pushing to the upper latitudes.
- Due to the positive AAM occupying the upper latitudes, strengthening of the jet stream is expected. This will result in a positive AO, and thus warmer weather.
- The GWO is expected to push into Stage 3 with the positive AAM, which will allow an El Nino-like set-up to evolve. Stormy weather in the West US, with warmth in the Central can be expected in coming weeks.
- East Asian signals tell us of a brief stormy period to end October, with potential significant warmth to start November.

Remember to look for Part 2 tomorrow afternoon!

Andrew

Saturday, September 13, 2014

Long Range Regional Outlook (Ohio Valley): September 20-October 12

This is the latest Long Range Regional Outlook forecast for the Ohio Valley area, valid for September 20th through October 12th.

CMC Ensembles
I have elected to use a combination of the CMC and ECMWF ensembles for this outlook, after finding the GFS ensembles to be in disagreement with the two aforementioned systems, which do hold a consensus.

The image above shows the CMC ensemble mean 500mb height contours on the date of September 22nd. In this forecast, depressions in the contours indicate troughing (cold and unsettled weather) while arcing motions in the contours depict ridging, which results in warm and relatively quiet weather. In the graphic shown above, we see a broad depression in the contours across the Plains and into the Midwest, though we then see slight ridging emerging over the Ohio Valley. This would tell me that the forecast period of September 20th to October 12th likely opens with some seasonable to above-normal temperatures, before colder weather moves in.

ECMWF Ensembles
Now shown above is a two-panel forecast from the ECMWF ensemble system. We see forecasted 500mb height contours and anomalies (with legend on the right) in the left-hand panel, with the ensemble 'spread' on the right image. An ensemble 'spread' indicates the degree of uncertainty among individual ensemble members on a particular area and its forecast. For example, we see deep purples on the right panel over the Great Lakes, which the left panel says will experience troughing (due to the depressed contours). This tells us that the ensembles are uncertain as to how likely this particular factor is to actually occur, and results in a wider spread of ensembles.

In the image above, valid for September 21st, we see a similar layout as that of the CMC ensembles. We see suppressed ridging over the Western US, created by some stormy weather in the Gulf of Alaska (see green shadings of below-normal height anomalies). This ridge in the West results in cooler weather for the Plains and Midwest, as the CMC ensembles depicted, but that then leads to some slight ridging over the Ohio Valley. This jives well altogether with the CMC ensembles.

Tropical Tidbits
In the image above, valid September 17th, we see a swath of negative height anomalies overtaking Japan as a rather strong upper level low scrapes the nation to the north. Seems pretty mundane, sure, but the consequences here at home are far more than mundane. As has been discussed consistently for the past couple of years, the weather in East Asia can have a significant impact on weather here in the United States. Utilizing the East Asian correlation of ridging over Japan equals ridging in the US 6-10 days later, and the same situation with negative height anomalies, we can foresee long range weather patterns weeks out at a time. This mechanism is referred to as the Typhoon Rule, and states that weather patterns found at the 500mb level can replicate themselves over North America 6-10 days later after they appear over Japan.

If we use this rule for the Ohio Valley, we might expect to see some cold weather, though I wouldn't call it a 'cold blast'. In this forecast, the upper level low looks displaced north enough that the core of the cold would likely stay in Canada. This fits in with the CMC and ECMWF ensemble projections of a weak trough moving east from the Plains and Midwest (as we discussed earlier), and is a reason why I disagreed with the GFS ensembles.

* The image used above is a forecast from the GFS ensembles, but the part I disagree with is for its forecast in the Northeast Pacific, not over Japan. Still, this part of the forecast must be monitored closely for the discrepancies described above.

Tropical Tidbits
Once again using this Typhoon Rule, we see the forecast on September 21st calling for continued deep troughing over Japan, now pushed deep into the country. Using the guidelines set forth for this rule, we might expect some chilly weather in the Ohio Valley around the September 27th - October 1st period.

After going over the factors listed above, the temperature and precipitation outlooks for the Ohio Valley over the September 20th - October 12th period are as follows:

Temperature Outlook:

The Weather Centre
Temperature Outlook
Temperatures for the Ohio Valley are expected to remain around average to slightly below-average, due to a warm start to the forecast period and a few weak cool shots.

Precipitation Outlook:

The Weather Centre
Precipitation Outlook
The precipitation outlook calls for predominantly below-normal precipitation over the forecast period, due to somewhat dry signals over the Japan region for the next week or two, among other factors.

The next Long Range Regional Outlook will be published Saturday, September 20th.

Andrew

Friday, September 12, 2014

Long Range Regional Outlook (Northeast & Mid-Atlantic): September 20-October 12

This is the premiere post of the Long Range Regional Outlooks, this one valid for the Northeast over the September 20th to October 12th period.

CMC
After examining long range ensemble guidance, a split became evident between the ECMWF/CMC ensembles, as well as the GFS Ensembles. Have elected to side with the ECMWF/CMC projections, as GFS Ensembles are generally going against the grain of the other two ensemble sets, as well as my own thoughts.

The CMC ensemble mean 500mb geopotential height forecast is shown above. As a general rule of thumb, depressions in the contour lines tend to indicate troughing and cold/stormy weather, while arcing of the contour lines indicates ridging of high pressure, as well as warm/quiet weather. In the image above, we see 500mb height contours valid for September 20th. We see a rather zonal flow (non-wavy pattern) set-up over the northeast Pacific, with the jet stream pushing into the west coast of North America. This is in contrast to the GFS ensembles, which predicted deep troughing in the Gulf of Alaska. There is some slight ridging in the Southwest, leading to some weak troughing across Central and Eastern US areas.

ECMWF
The ECMWF ensembles are shown above, with the 500mb geopotential height anomalies and contours shown on the left panel, as well as the 'spread' (degree of disagreement among the ensemble members) for this forecast of September 21st on the right. This forecast is similar to the CMC ensemble projection above, as we see the Pacific jet stream pushing into the Western part of North America.

According to the height anomalies and contours, we do see some substantial troughing in the Gulf of Alaska, though it is not to the degree of the GFS ensembles. We then see some weak ridging in the Southwest, as was also seen with the CMC ensembles, though it is suppressed. Some weak troughing evolves in the Central US before weak ridging in the East.

Tropical Tidbits
In the image above, valid September 17th, we see a swath of negative height anomalies overtaking Japan as a rather strong upper level low scrapes the nation to the north. Seems pretty mundane, sure, but the consequences here at home are far more than mundane. As has been discussed consistently for the past couple of years, the weather in East Asia can have a significant impact on weather here in the United States. Utilizing the East Asian correlation of ridging over Japan equals ridging in the US 6-10 days later, and the same situation with negative height anomalies, we can foresee long range weather patterns weeks out at a time. This mechanism is referred to as the Typhoon Rule, and states that weather patterns found at the 500mb level can replicate themselves over North America 6-10 days later after they appear over Japan.

If we use this rule for the Northeast, we might expect to see the northern parts of the region get some substantial cold around a September 23rd - 27th period. This fits in with the CMC and ECMWF ensemble projections, and is a reason why I disagreed with the GFS ensembles.

* The image used above is a forecast from the GFS ensembles, but the part I disagree with is for its forecast in the Northeast Pacific, not over Japan. Still, this part of the forecast must be monitored closely for the discrepancies described above.

Tropical Tidbits
Once again using this Typhoon Rule, we see the forecast on September 21st calling for continued deep troughing over Japan, now pushed deep into the country. Using the guidelines set forth for this rule, we might expect continued cold in the Northeast around the September 27th - October 1st period.

After going over all of the factors above, as well as extra analyzations not mentioned in this post, the outlook for the September 20th to October 12th period over the Northeast is as follows.

Temperature Outlook:

The Weather Centre
Temperature Outlook
Precipitation Outlook

The Weather Centre
Precipitation Outlook
I expect the Northeast to remain predominantly below normal for temperatures in the aforementioned time period, while precipitation should end up a bit below normal, close to neutral.

Andrew

Friday, April 18, 2014

Long Range Forecast for Late April, Early May

Let's examine the long range forecast for late April into the beginning days of May.

Long range analog guidance from the ESRL/PSD division, a special physics-based meteorology branch of the government weather service, indicates we will see troughing setting up in Western North America in late April as a strong upper level low drops into the Southwest, provoking high pressure out ahead of it in the Central and East US. This ridge out ahead of the upper level low will likely make for anomalously warm weather across the aforementioned sections of the country, a real treat in the face of such a nasty winter.

Beyond the last days of April, it is expected that the weather will take on a slightly cooler tone. In the wake of a Kelvin Wave currently pushing across the Pacific, enhanced tropical convection is expected to develop near the 60E Longitude demarcation, a classic Phase 1 MJO signal. When we see enhanced tropical convection in this Phase 1 signal, it typically means we can anticipate cooler than normal weather here in the United States.

I am a bit skeptical of this cold weather forecast, due to the response we're looking to see in East Asia around April 26th. There is a rule, well explained by Joe Renken, that states a weather phenomenon in East Asia will be reciprocated in the United States 6-10 days later. This means that if there is a storm system in Japan on a certain day, we can expect a storm in the US 6-10 days after that. The same goes for high pressure and warm weather. In this image above, we see projected tropopause pressures, vector winds, and wind speeds way up in the middle-upper regions of the troposphere into the stratosphere. If we look to this forecast image, valid April 26th, and find Japan in the top left corner of the image, we can make out a bulge of orange pushing towards the center of this image. That orange bulge signifies the presence of a Rossby Wave. In simple terms, this Rossby Wave will 'break' over Japan and initiate an intensive warming spell. This may continue for some time, but if it does happen in late April, we would likely see the cooling effects of the Phase 1 MJO hurt, as this East Asian development would likely overrule it.

To summarize:
• A warm end to April is expected.
• A cool start to May is possible, but there are hints that the late April warmth may just carry over into May. More time is needed to investigate this potential.
• A severe weather event is possible in the final 7 days of April, due to the upper level low in the West US.

Andrew

Sunday, March 30, 2014

April 9-15 Multiple Potentially Significant Storm Systems

I'm seeing the threat arise for not one, but two potentially significant storm systems.

Tropical Tidbits
The GFS model has been consistently bringing in a strong upper level low into Japan around April 4th, beginning to attain a negative tilt on the image above, valid for the afternoon of April 4th (for more information on negatively-tilted storms, please click on this link to see the post published yesterday on this topic). There is a rule, well explained by Joe Renken, that states a weather phenomenon in East Asia will be reciprocated in the United States 6-10 days later. This means that if there is a storm system in Japan on a certain day, we can expect a storm in the US 6-10 days after that. The same goes for high pressure and warm weather. If we take the April 4th day and extrapolate it out 6-10 days, we arrive at the April 10-14 timeframe for what could be a hefty storm. I say it could be strong, as the strength of these East Asian systems has been reflected in the resultant United States storm . For instance, a strong storm over Japan does usually result in a strong storm in the US 6-10 days later, and that's what we're looking to see in this April 10-15 timeframe.

But we're not just looking for one system. This time, there are indications we could see two systems.

Tropical Tidbits
About a full day after the original system moves out from Japan, we see another swath of significantly below-normal heights enter Japan. The GFS image above, now valid for April 5th, reflects this, and we can see our first storm system that was discussed above now located just west of the ridge in the Bering Sea. This second storm system is kind of a tricky one. I'm watching closely here, as it could end up being one storm with residual cold weather just hanging behind. However, this forecast says we are in for two storm systems, and since we're entering spring, these strong storm systems can create nasty severe weather. For that reason, I'll err on the side of caution and highlight two storms in this post, but do realize that this may switch back to one significant storm.

The pattern I had highlighted earlier last week, which showed how the Northeast was at the most risk, is now a bit more hazy than when we last analyzed this timeframe. Model guidance is no longer as favorable for an East Coast impact, but rather than drop that region from a potential impact zone, I'll still tentatively keep the Central and East US in line for this storm. We should know much more about what this storm(s) could do in about 4 or 5 days from today.

As you can tell, there's a lot of uncertainty. Let's sum up what we do know.

- There is the potential for at least one significant storm system around the April 9-15 period.
- Severe weather does look to be a potential factor in this timeframe.
- Cooler and unsettled weather can be anticipated for this timeframe.

Andrew

Monday, March 10, 2014

Impending Snowstorm to Drop 12"+ of Snow Tuesday and Wednesday

Note: This post will concern the March 11-14 Significant Snowstorm, but the title has been changed. If you find this sort of title better than the date and storm classification, or if you prefer the date + classification, leave your input in the comments below.

I'm carefully watching the next few days for a snowstorm that looks to drop a foot of snow or more on the United States.

We'll begin with an analyzation of the big picture of this storm. The model I will be using here will be the NAM model, as its low-resolution GFS counterpart appears to be suffering from some errors we will address later on in this post. The image above shows mean sea level pressure (MSLP) values, as well as precipitation values and high and low-pressure demarcations for Tuesday afternoon, tomorrow. We see a strong storm system in the far northeast corner of Kansas, bottoming out at 994 millibars and creating a heck of a pressure gradient over Nebraska. In Nebraska, we also see a precipitation shield breaking out, which could be accompanied by some harsh winds if that pressure gradient happens to meet up with the precipitation. Luckily, this forecast keeps the strongest winds just south and east of the inclement weather in northwest Nebraska.

In the late evening hours of Tuesday, we see that our storm system has pushed off to the east, maintaining both its tight pressure gradient and precipitation shield as it progresses east. Our storm is now at about 995 millibars, roughly the same strength as what we saw Tuesday afternoon in the image above. The 1 millibar difference really isn't anything to write home about in this situation. Typically, we might see a severe weather situation arising in the Plains and Midwest due to that tight pressure gradient, but that swath of precipitation down in Mississippi, Alabama and the panhandle of Florida indicate there's a storm system there (a closed low, to be exact) that will prohibit such a severe weather event from forming. At this point in time, accumulating snow should begin to fall over the Midwest.

By the time we hit the morning of Wednesday, March 12, we find that phasing has occurred with our storm system. What this means is that our original system has phased, or merged, with a system coming south from Canada to create a single, stronger storm. This is clearly displayed by the abundant precipitation breaking out over Michigan, Indiana and Ohio, and also shown by the tighter pressure gradient expanded across much of the Central and East US. It is also possible the western flank of the gradient is a bit amplified thanks to the strong high pressure in Canada, but that's not a big piece of the puzzle right now. At this point in time, potentially significant accumulating snow looks to be impacting the Ohio Valley.

Lastly, by the evening hours of Wednesday, we see the system has now transferred offshore, and is now putting down significant accumulating snow across the interior Northeast, leaving coastal areas (and even some inland regions) to experience rain or a mixing event.  The extreme pressure gradient remains in place, maximized in this forecast graphic over Pennsylvania and New York, as well as the rest of the New England area. After this, the storm exits the region, leaving quite a snowstorm in its wake. Check out the latest snowfall forecasts for this event:

To add some model variety, we'll also show the GFS snowfall forecast.

If you look at these maps and think something's not the same, you're right. There are some differences here. The primary difference is that the GFS is more south with the storm system than the NAM model. This is displayed well when looking at the beginning of the accumulating snow swath all the way back out in Illinois. The NAM model gives a generous 6" or more to Chicagoland, but the GFS only lays down a handful of inches across Springfield, IL.

After looking at all the data, I think it might be best to lean towards a NAM solution with the placement of heavy snow further north in the Great Lakes, but not too far north, if you know what I mean. Let's go over why.

The first red flag is the NCEP Weather Prediction Center's preferred track superimposed on an ensemble suite for this storm system. We see the NCEP WPC track for this storm in black, but it's obvious that their track is on the southern envelope of guidance. The heavy majority of ensemble members prefer to take this storm further north, into central or northern Missouri rather than southwestern MO. This would result in snow totals displaced further to the north, like the NAM says. But we can dig deeper than this. Let's keep going in our search for why these northern amounts are more preferred over the GFS.

Let's take a close look at the image above. Here, we see the NAM model projecting 300mb wind speeds in color shades and wind barbs, valid early Wednesday morning. If you look closely, you can spot two distinct jet streaks, or two areas of stronger winds than the winds around them. These are shown best by the yellows in Oklahoma and Kansas, as well as in far northern New England. These two jet streams form the classic coupled jet stream, as defined by Uccellini and Kocin in their studies. This coupled jet stream idealizes that there is a space between two jet streaks, where heightened divergence is found. In other words, in the space between two jet streaks, the atmosphere wants to create more precipitation. So, if we look above for the space between these two jet streaks, we can draw a line roughly from Missouri to Lake Michigan of where this increased divergence, or increased precipitation would be expected to appear. This would seem to put the NAM's snowfall placement 'in the right' when compared to placement of the GFS snow totals, at least in the Great Lakes region.

Also, take a look at what the 18z GFS does with the storm as it moves along the Ohio Valley.


If you watch the low pressure denotation as it moves from Indiana, it goes to the southeast rather than to the east. You might not think this is so odd, but when you compare it to the agreed notion that this storm will be moving west-to-east, a southward movement is rather odd.

Additionally, a convective feedback issue was observed as the system crossed east through Indiana, likely hampering the forecast for this storm. In this case, you may want to defer to the 12z GFS, as it is more logical in comparison to this run.

To conclude, a significant winter storm is expected for a good chunk of the US. Model guidance differs on placement of the snow, mainly in the Great Lakes, but it is agreed on that the Northeast will see a substantial snowstorm.

Andrew