This is an updated look at the January 17-21 potential winter storm, which had previously been titled the January 18-20 winter storm. The timeframe was extended to provide a 'cushion', as a look at some new indices favor a wider timeframe.
This is a long range post, and many found the notion of me publishing such a far out storm possibility appalling. However, the evidence is building for a potential storm system in this timeframe, and if you'll just give this post a good read, you can see why I'm posting about it this early.
This image above from the Weather Prediction Center (WPC) shows the mid-level pattern over Alaska on January 1st. There are two systems marked on here; one storm system is over Alaska, as the dip in the height contours shows, and another storm is marked by the red 'L' just offshore of far eastern Russia. We're going to be watching the red 'L' for this storm system. Model guidance sees this storm cutting north over the western Bering Sea, and this is where we employ Joe Renken's Bering Sea Rule. The Bering Sea Rule states that when a storm moves through the Bering Sea, a storm system then moves through a portion of the United States 17 to 21 days later. If we see this system cutting north in the western Bering Sea around the December 31 - January 1 timeframe, we can then predict a storm system to cut north in the US as well 17-21 days later, which brings us to the January 16-22 time period. Because the storm is projected to cut north in the western Bering Sea, Joe Renken does believe that this signals a Great Lakes Cutter system around the 20th of January. Other subjects I will discuss below lend additional credibility to this timeframe laid out, as well as the predicted track of the storm.
The following MJO OLR portion is copied from my previous December 23 post on this storm, because the information remains valid.
The Bering Sea Rule isn't the only long range piece of guidance we can use to detect a potential storm. Here, in a CFS four-member ensemble forecasts developed by Kyle MacRitchie, we see the long range projection of the Madden-Julian Oscillation, in its eight-phase phase space diagram. Using this graph, we see that the MJO is projected to enter Phase 5 around December 27th, which all ensemble members agree on. Now, we'll take a look at the Outgoing Longwave Radiation (OLR) composites in the mid-latitudes for a Phase 5 MJO.
This MJO composite, developed by Nicholas Schiraldi, shows OLR anomalies in the 30 day period before and the 30 day period after the MJO hits Phase 5. In this case, negative lag days on the left side of the image show the number of days before the MJO gets to Phase 5 territory, while positive lag days on the left legend depict the number of days after the MJO hits Phase 5. We can substitute the lag day of 0 for December 27th, as that is when the CFS forecast above predicts we will get into that Phase 5 MJO. Looking ahead, we will ignore the red circled portion (that is for an upcoming post) and will instead take a look at the black circled part of the graph, where you can see blues shaded in. A look at the longitudes at the bottom of the image tells us the strongest negative OLR anomalies will be centered between the 85 West and 100 West longitude lines. If we put that together with the indication that this OLR anomaly chart is valid for latitudes between 55N and 40N, we find that the latitude lines cover the entire United States from Canada to Mexico, while the 85W and 100W longitude lines cover the US from roughly the Central Plains to the Great Lakes. If we clarify that negative OLR anomalies mean stormy weather, and observe that the circled blues are moving north and east, we can deduce that a Phase 5 MJO results in a storm system crossing the US across the Plains, Midwest and Great Lakes in roughly a northeast (or even east-northeast) direction. If we glance at the lag days on the left for when this storm would occur, we find that the circled blues encompass lag days of +17 to +25, meaning the storm would hit anywhere in a 17 to 25 day timeframe after the MJO hits Phase 5. 17 to 25 days after the projected December 27th arrival of the MJO at Phase 5 puts this potential storm system in the January 15-23 period. Now, in order to cut down on the large timeframe, I decided to shorten the positive lag days to cover the strongest negative anomalies only, which gave me a projected storm timeframe of January 18-21.
So we now have two timeframes for a potential storm system. The Bering Sea Rule gives us a timeframe of January 16-20, while the MJO OLR Composites give us a broad timeframe of January 15-23, which I shortened to January 18-21. If we put those two dates together, we end up with a broad-brush timeframe of January 15-21, which covers all dates outlined by either one or both indices. If we shorten that January 15-21 period to only include dates that both indices highlight, we end up with a January 18-20 timeframe for this potential Plains/Midwest/Great Lakes storm system.
How do we know the track of this storm?
Well, we've already deduced from the OLR charts that the longitude and latitude markings would strongly suggest a Plains/Midwest/Great Lakes storm system, moving northeast as it crosses those regions. With that in mind, I took a look at a device created by Larry Cosgrove and found two plausible storm tracks.
The first track possible is a Panhandle Hook (A) system. We can see that this system fits the bill that was outlined by the OLR charts. It originates in the Plains and move northeast through the Midwest and Great Lakes. These systems tend to bring heavy wintry precipitation to the Midwest, Great Lakes and upper Plains, and, if all goes right, these systems can attain massive amounts of moisture from the Gulf of Mexico to enhance these wintry precipitation prospects.
The second track that also fits the bill is a Colorado Low (A). The system originates in the Plains and then moves northeast across the Midwest and Great Lakes before progressing into Canada. The MJO OLR charts confirm that this storm is also a possibility, and the last time I used the MJO OLR charts to make a long term prediction, the results were spectacular. Because this potential event is still about a month away, we don't know how the teleconnections will react to possibly force this storm in a different direction than what the MJO OLR composites predict will happen. (End copied portion from Dec 23 post)
The next item to discuss also comes from Joe Renken, and it is one that has been discussed on this blog frequently. This is the East Asian correlation, which states a storm system in East Asia is reciprocated in the United States 6-10 days later.
Shown above is the 360 hour 500mb height anomaly forecast across the Northern Hemisphere. While this is definitely in the long range, I feel it is worth mentioning here, as it does help to prove storm prospects for this January 17-21 time period. Looking towards Japan at Hour 360 (January 11), we see stormy weather, as indicated by the deep blues over the region. If we are to say that this East Asia correlation comes into play here, extrapolating January 11th 6-10 days out brings us to a potential storm timeframe of January 17-21, which fits perfectly into the allotted timeframe.
After examining these three items, we have come up with three timeframes, with one set forward by each item we examined.
•Bering Sea Rule: January 16-22
•MJO OLR Composite: January 15-23 (tighter timeframe of January 18-21)
•East Asian Correlation (Typhoon Rule): January 17-21
The general consensus of a storm system in mid/late January is pretty clear; the trick is nailing down a more pinpointed timeframe, rather than a generalized time period.
We still aren't done- there is one more item rooting for this Colorado Low/Panhandle Hook storm: the ECMWF Weeklies.
This is an image from the ECMWF Weeklies Control forecast, showing us mean sea level pressure anomalies and contours. This image is valid for January 19th into the 20th, and the storm system in question is clearly defined by the deep negative MSLP anomalies over eastern Oklahoma. The yellow arrow I drew connects the deepest point of the storm in this image with the center of the storm approximately 24 hours later. You can see how that arrow takes the storm through the Southern Midwest into west central Ohio. Because this storm fits the bill for crossing the Midwest/Ohio Valley in the MJO OLR Composite timeframe, and because it happens over the period allotted by the Bering Sea and Typhoon Rules, I have decent confidence that while this storm may not show up in future ECMWF Weekly forecasts, we could see this sort of scenario play out with this very possible winter storm.
Andrew
This is a long range post, and many found the notion of me publishing such a far out storm possibility appalling. However, the evidence is building for a potential storm system in this timeframe, and if you'll just give this post a good read, you can see why I'm posting about it this early.
This image above from the Weather Prediction Center (WPC) shows the mid-level pattern over Alaska on January 1st. There are two systems marked on here; one storm system is over Alaska, as the dip in the height contours shows, and another storm is marked by the red 'L' just offshore of far eastern Russia. We're going to be watching the red 'L' for this storm system. Model guidance sees this storm cutting north over the western Bering Sea, and this is where we employ Joe Renken's Bering Sea Rule. The Bering Sea Rule states that when a storm moves through the Bering Sea, a storm system then moves through a portion of the United States 17 to 21 days later. If we see this system cutting north in the western Bering Sea around the December 31 - January 1 timeframe, we can then predict a storm system to cut north in the US as well 17-21 days later, which brings us to the January 16-22 time period. Because the storm is projected to cut north in the western Bering Sea, Joe Renken does believe that this signals a Great Lakes Cutter system around the 20th of January. Other subjects I will discuss below lend additional credibility to this timeframe laid out, as well as the predicted track of the storm.
The following MJO OLR portion is copied from my previous December 23 post on this storm, because the information remains valid.
The Bering Sea Rule isn't the only long range piece of guidance we can use to detect a potential storm. Here, in a CFS four-member ensemble forecasts developed by Kyle MacRitchie, we see the long range projection of the Madden-Julian Oscillation, in its eight-phase phase space diagram. Using this graph, we see that the MJO is projected to enter Phase 5 around December 27th, which all ensemble members agree on. Now, we'll take a look at the Outgoing Longwave Radiation (OLR) composites in the mid-latitudes for a Phase 5 MJO.
This MJO composite, developed by Nicholas Schiraldi, shows OLR anomalies in the 30 day period before and the 30 day period after the MJO hits Phase 5. In this case, negative lag days on the left side of the image show the number of days before the MJO gets to Phase 5 territory, while positive lag days on the left legend depict the number of days after the MJO hits Phase 5. We can substitute the lag day of 0 for December 27th, as that is when the CFS forecast above predicts we will get into that Phase 5 MJO. Looking ahead, we will ignore the red circled portion (that is for an upcoming post) and will instead take a look at the black circled part of the graph, where you can see blues shaded in. A look at the longitudes at the bottom of the image tells us the strongest negative OLR anomalies will be centered between the 85 West and 100 West longitude lines. If we put that together with the indication that this OLR anomaly chart is valid for latitudes between 55N and 40N, we find that the latitude lines cover the entire United States from Canada to Mexico, while the 85W and 100W longitude lines cover the US from roughly the Central Plains to the Great Lakes. If we clarify that negative OLR anomalies mean stormy weather, and observe that the circled blues are moving north and east, we can deduce that a Phase 5 MJO results in a storm system crossing the US across the Plains, Midwest and Great Lakes in roughly a northeast (or even east-northeast) direction. If we glance at the lag days on the left for when this storm would occur, we find that the circled blues encompass lag days of +17 to +25, meaning the storm would hit anywhere in a 17 to 25 day timeframe after the MJO hits Phase 5. 17 to 25 days after the projected December 27th arrival of the MJO at Phase 5 puts this potential storm system in the January 15-23 period. Now, in order to cut down on the large timeframe, I decided to shorten the positive lag days to cover the strongest negative anomalies only, which gave me a projected storm timeframe of January 18-21.
So we now have two timeframes for a potential storm system. The Bering Sea Rule gives us a timeframe of January 16-20, while the MJO OLR Composites give us a broad timeframe of January 15-23, which I shortened to January 18-21. If we put those two dates together, we end up with a broad-brush timeframe of January 15-21, which covers all dates outlined by either one or both indices. If we shorten that January 15-21 period to only include dates that both indices highlight, we end up with a January 18-20 timeframe for this potential Plains/Midwest/Great Lakes storm system.
How do we know the track of this storm?
Well, we've already deduced from the OLR charts that the longitude and latitude markings would strongly suggest a Plains/Midwest/Great Lakes storm system, moving northeast as it crosses those regions. With that in mind, I took a look at a device created by Larry Cosgrove and found two plausible storm tracks.
Image created by Larry Cosgrove. |
Image created by Larry Cosgrove. |
The next item to discuss also comes from Joe Renken, and it is one that has been discussed on this blog frequently. This is the East Asian correlation, which states a storm system in East Asia is reciprocated in the United States 6-10 days later.
Shown above is the 360 hour 500mb height anomaly forecast across the Northern Hemisphere. While this is definitely in the long range, I feel it is worth mentioning here, as it does help to prove storm prospects for this January 17-21 time period. Looking towards Japan at Hour 360 (January 11), we see stormy weather, as indicated by the deep blues over the region. If we are to say that this East Asia correlation comes into play here, extrapolating January 11th 6-10 days out brings us to a potential storm timeframe of January 17-21, which fits perfectly into the allotted timeframe.
After examining these three items, we have come up with three timeframes, with one set forward by each item we examined.
•Bering Sea Rule: January 16-22
•MJO OLR Composite: January 15-23 (tighter timeframe of January 18-21)
•East Asian Correlation (Typhoon Rule): January 17-21
The general consensus of a storm system in mid/late January is pretty clear; the trick is nailing down a more pinpointed timeframe, rather than a generalized time period.
We still aren't done- there is one more item rooting for this Colorado Low/Panhandle Hook storm: the ECMWF Weeklies.
This is an image from the ECMWF Weeklies Control forecast, showing us mean sea level pressure anomalies and contours. This image is valid for January 19th into the 20th, and the storm system in question is clearly defined by the deep negative MSLP anomalies over eastern Oklahoma. The yellow arrow I drew connects the deepest point of the storm in this image with the center of the storm approximately 24 hours later. You can see how that arrow takes the storm through the Southern Midwest into west central Ohio. Because this storm fits the bill for crossing the Midwest/Ohio Valley in the MJO OLR Composite timeframe, and because it happens over the period allotted by the Bering Sea and Typhoon Rules, I have decent confidence that while this storm may not show up in future ECMWF Weekly forecasts, we could see this sort of scenario play out with this very possible winter storm.
Andrew
5 comments:
Could this storm system become a blizzard? Could it unleash heavy snow in Missouri?
Do we know the strength of this? A month of tracking this potential will mean nothing if it only drops 6" at the max.
Your comments are not appalling. They are fascinating, technical but fascinating. The other people just don't gave the guts to project so far out ahead. It will be interesting to see how it pans out.
if this does pan out it appears both tracks will start somewhere like southwest corner of kansas so i will ask the same questions as above:
could this start as a blizzard and or does it look possible to be a heavy snow maker for kansas?
I find it "APPALLING"...that you do not get more credit for the "Right On Target" Winter forcast you made way back in the fall........So far you have been right on time.......Especially the fact that you forcasted the South East to be mostly snowless because of the Ridge factor, and the fact that you hit on the snow storm tracks so far. Great job and my hats off to you!
Post a Comment